
The Design of a Fault-Tolerant COTS-Based Bus
Architecture

Savio N. Chau Leon Alkalai Ann T. Tai
John B. Burt IA Tech, Inc.

Jet Propulsion Laboratory 10501 Kinnard Avenue
California Institute of Technology Los Angeles, CA 90024

Pasadena, CA 9 1 109

April 15, 1999

Abstract

In this paper, we report our experiences and findings on the design of a fault-tolerant bus architecture

comprised of two COTS buses, the IEEE 1394 and the 12C. This fault-tolerant bus is the backbone system

bus for the avionics architecture of the X2000 program at the Jet Propulsion Laboratory. COTS buses are

attractive because of the availability of low cost commercial products. However, they are not specifically

designed for highly reliable applications such as long-life deep-space missions. The X2000 design team

has devised a multi-level fault tolerance approach to compensate for this shortcoming of COTS buses.

First, the approach enhances the fault tolerance capabilities of the IEEE 1394 and 12C buses by adding a

layer of fault handling hardware and software. Second, algorithms are developed to enable the IEEE

1394 and the 12C buses assist each other to isolate and recovery from faults. Third, the set of IEEE 1394

and 12C buses is duplicated to further enhance system reliability. The X2000 design team has paid special

attention to guarantee that all fault tolerance provisions will not cause the bus design to deviate from the

commercial standard specifications. Otherwise, the economic attractiveness of using COTS will be

diminished. The hardware and software design of the X2000 fault-tolerant bus are being implemented

and flight hardware will be delivered to the ST4 and Europa Orbiter missions.
-kt e++ -* -~b i f

Keywords: COTS, IEEE 1394, 12C, fault-tolerant bus architecture, space applications
Principal Contact: Savio N. Chau, Savio.N.Chau@jpl.nasa.gov
-
The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

mailto:Savio.N.Chau@jpl.nasa.gov

1 Introduction

In recent years, commercial-off-the-shelf (COTS) products have found many applications in

space exploration. The attractiveness of COTS is that low cost hardware and software products are

widely available in the commercial market. By using COTS through out the system, we expect to

significantly reduce both the development cost as well as the recurring cost of the system. On the other

hand, COTS are not specifically developed for highly reliable applications such as long-life deep-space

missions. The real challenge is to deliver a low-cost, highly reliable and long-term survivable system

based on COTS that are not developed with high-reliability in mind. In this paper, we report our

experience of using COTS buses to implement a fault-tolerant avionics system for the Advanced

Spacecraft System Development Program (also known as X2000) at the Jet Propulsion Laboratory. The

X2000 avionics system design emphasizes on architectural flexibility and scalability, so that it can be

reused for multi-missions in order to reduce the cost of space exploration [I]. The advanced avionics

technologies that enable the X2000 program are being developed at the newly established Center for

Integrated Space Microsystems, (CISM), a Center of Excellence at NASA’s Jet Propulsion Laboratory

[2]. The main focus of CISM is the development of highly integrated, reliable, and capable micro-

avionics systems for deep space, long-term survivable, autonomous robotic missions [3][4]. In addition,

the X2000 Program is participating in a software architecture development effort called the Mission Data

System architecture (MDS), which brings within a common framework the software for both on-board

avionics as well as on-ground operations.

The X2000 architecture is a distributed, symmetric system of multiple computing nodes and

device drivers that share a common redundant bus architecture. Most notably, all interfaces used in this

distributed architecture are based on COTS. That is, the local computer bus is the Peripheral Component

Interface (PCI) bus; the “system” bus is the IEEE 1394 high-speed bus; and the engineering bus is the 12C

bus (see Figure 1). In the following sections, we first outline a methodology of applying COTS for highly

reliable system. Based on this methodology, we describe the current baseline for the X2000 First

1

Delivery avionics system architecture. This is followed by how the X2000 Program is using COTS to

implement a fault-tolerant bus for a scalable and distributed system.

2 A Methodology of Applying COTS for Highly Reliable System

JPL has a long history of successfully applying fault protection techniques in space exploration.

One of the most important techniques used by JPL, in design of space vehicle fault protection, is fault

containment. Traditionally, a spacecraft is divided into fault containment regions. Rigorous design effort

is used to ensure no effects of a fault within a containment region will propagate to the other regions.

Furthermore, JPL has a policy of single fault tolerance in most of the spacecraft design. This policy

reqiures dual redundancy of fault containment regions.

While these techniques have been very successful in the past, they may not be easily applied in a

COTS environment. The reason is that COTS are not developed with the same level of rigorous fault

tolerance in mind. Hence, there are many fundamental fault tolerance weakness in COTS. For examples,

the popular VME bus does not even have parity bit to check the data and address [113. Another example

is the EEE 1394 bus (cable implementation) adopts a tree topology in which a single node or link failure

will partition the bus. These fundamental weakness will hinder rigorous enforcement of fault

containment. Worse yet, it is almost impossible to make modifications to COTS in general. There are

two reasons. First, the suppliers of COTS products have no interest to change their design, add any

overhead, or sacrifice their performance for a narrow market of high reliability applications. Second, any

modification will render the COTS incompatible with commercial test equipment or software, and

therefore diminish the economic benefits of COTS drastically. Therefore, it is obvious that fault tolerance

cannot easily be achieved by a single layer of fault containment regions that contains COTS.

The COTS-based bus architecture of the X2000 has employed a multi-level fault protection

methodology to achieve high reliability. The description of each fault protection level in the methodology

is given as follows:

2

Level I : Native Fault Containment - most of COTS bus standards have some limited fault detection

capabilities. These capabilities should be exploited as the first line of defense.

Level 2: Enhanced Fault Containment - addition layer of hardware or software can be used to enhance

the fault detection, isolation, and recovery capabilities of the native fault containment region. Examples

are watchdog timer or additional layer of error checking code. It is important to ensure that the added

fault tolerance mechanisms will not affect the basic COTS functions. This level is also the most

convenient level to implement provisions for fault injections.

Level 3: Fault Protection by Component Level Design-Diuersity - many COTS have

fundamental fault tolerance weakness that cannot simply be removed by enhancing

the native fault protection mechanisms. These weakness usually are related to single

points of failures. One example is the tree topology of the IEEE 1394 bus. Once the

bus is partitioned by a failed node, no watchdog timer or extra layer of protocol can

reconnect the bus. Similar examples include buses using other point-to-point

topologies. In order to compensate for such fundamental weaknesses, complementary types of buses

may be used to implement this level of fault protection In particular, the 12C bus, which has a multi-drop

bus topology, is used in the X2000 architecture to complement the EEE 1394 fault isolation and

recovery.

Another example of design-diversity to compensate for COTS reliability in X2000 is the use of

flash memory for the Non-Volatile Memory. The flash memory has the density required by X2000, but it

has been observed that a single high energy particle can corrupt an entire block in the flash memory. To

handle such failure mode with error correcting codes alone may not meet the reliability requirement.

Therefore, in order to compensate for this weakness, a more robust but much lower density GMRAM or

FeRAM is used to store critical state data in stead of the flash memory.

3

Level 4: Fault Protection by System Level Redundancy - the Level 3 fault containment regions will be

replicated for system level fault containment. The redundant fault containment regions can be either in

ready or dormant states, depending on the recovery time and other system requirments. If they are in

ready state, voting or comparison of outputs among the regions will provide one more level of fault

detection. In either case, the redundant regions are necessary resources for the fault recovery process.

In order to aid the discussion on how this methodolgy is applied to the X2000 bus architecture, an

overview of the overall X2000 avionics system architecture and the common failure modes in space

applications are given in the next section.

3 Overview of the X2000 Avionics Architecture

The X2000 avionics architecture is shown in Figure 1 . It is comprised of a number of Compact

PC1 based “nodes” connected by a fault-tolerant system bus. A “node” can either be a flight computer, a

non-volatile memory, a subsystem microcontroller, or a simple sensor interface. The fault-tolerant system

bus is comprised of two COTS buses, the IEEE 1394 [5][6] and 12C [7][8]. Both buses are multi-

master and therefore support symmetric scalable and distributed architectures. Due to

the standard electrical interface and protocol of the COTS buses, nodes complying with the bus interfaces

can be added to or removed from the system without impacting the architecture. The capability of each

node can also be enhanced by adding circuit boards to the its compact PC1 bus [9]. An overview of the

spacecraft functions that are handled by this architecture features are given in the following.

Power management and distribution

Science data storage and on-board science processing

Telemetry collection, management and downlink spacecraft navigation and control

Autonomous operations for on-board planning, scheduling, autonomous navigation fault-protection,

isolation and recovery, etc.

4

- Interfacing to numerous device drivers: both “dumb” as well as “intelligent” device drivers

The IEEE 1394 Bus

The IEEE 1394 bus is the artery of the system and is capable to transfer data at 100, 200, or 400 Mbps.

The IEEE 1394 bus has two implementations, cable and backplane. The cable implementation has

adopted a tree topology and the backplane implementation has a multi-drop bus topology. From the

topological point of view, many designers at JPL are more interested in the backplane implementation

because it resembles the 1553 bus used in the Cassini project [13]. Unfortunately, it was found that

although the backplane 1394 bus has been implemented by the aerospace industry [121, it is not widely

supported in the commercial industry and thus will not be able to take the full advantage of COTS. On

the other hand, the cable implementation has been enjoying a much wider commercial support. It has also

better performance than the backplane implementation [5]. Therefore, the cable implementation has been

selected for the X2000.

The IEEE 1394 bus has two modes of data transactions, the isochronous transaction and the

asynchronous transactions. The isochronous transaction guarantees on-time delivery but does not require

acknowledgment, while the asynchronous transaction requires acknowledgment but does not guarantee

5

on-time delivery. Isochronous messages are sent through “channels” and a node can talk on or listen to

more than one isochronous channel. Each isochronous channel can request and will be allocated a portion

of the bus bandwidth at the bus initialization. Once every 125 microseconds (called isochronous cycle),

each isochronous channel has to arbitrate but is guaranteed a time slot to send out its isochronous

messages. At the beginning of each isochronous cycle, the root sends out a cycle start message and then

the isochronous transaction will follow. After the isochronous transaction is the asynchronous

transaction. Asynchronous message is not guaranteed to be sent within an isochronous cycle. Therefore,

a node may have to wait a number of isochronous cycles before its asynchronous massage can be sent out.

The asynchronous transaction employs a fair arbitration scheme, which allows each node to send an

asynchronous message only once in each fair arbitration cycle. A fair arbitration cycle can span over

many isochronous cycles, depending on how much of each cycle is used up by the isochronous

transactions and how many nodes are arbitrating for asynchronous transactions. The end of a fair

arbitration cycle is signified by an Arbitration Reset Gap.

During the bus startup or reset, the bus will go through an initialization process in which each

node will get a node ID. In addition, the root (cycle master), bus manager, and isochronous resource

manager will be elected. The root mainly is responsible for sending the cycle start message and acts as the

central arbitrator for bus requests. The bus manager is responsible to acquire and maintain the bus

topology. The isochronous resource manager is responsible for allocating bus bandwidth to isochronous

nodes. The root, bus manager, and isochronous resource manger are not pre-determined, so that any nodes

can be elected to take these roles as long as they have the capability.

The 12C Bus

The 12C bus is a simple bus with a data rate of 100 kbps. It has a more traditional multi-drop

topology. The 12C bus has two open-collector signal lines: a data line (SDA) and a clock line (SCL).

Both signal lines are normally pulled high. When a bus transaction begins, the SDA line is pulled down

before the SCL line. This constitutes a start condition. Then the address bits will follow, which is

6

followed by a readwrite bit and then an acknowledgment bit. The target node can acknowledge the

receipt of the data by holding down the acknowledgment bit. After that, eight bits of data can be sent

followed by another acknowledgment bit. Data can be sent repeatedly until a stop condition occurs, in

which the source node signals the end of transaction by a low-to-high transition on the SDA line while

holding the SCL line high.

The 12C uses collision avoidance to resolve conflicts between master nodes contending for the

bus. If two or more masters try to send data to the bus, the node producing a ‘one’ bit will lose arbitration

to the node producing a ‘zero’ bit. The clock signals during arbitration are a synchronised combination of

the clocks generated by the masters using the wired-AND connection to the SCL line.

There are two applications of the 12C bus in this architecture. In the system level, it is used to

assist the IEEE 1394 bus to isolate and recover from faults. In the subsystem level, a separate 12C bus is

used to collect engineering data from sensors and send commands to power switches or other equipment.

Description of Nodes

There are three basic types of nodes in the system: flight computer, microcontroller node, and non-

volatile memory node. The flight computer node is consisted of a high-performance processor module

(250 MIPS); 128 Mbytes of local (DRAM) memory; 128 Mbytes of non-volatile storage for boot-up

software and other spacecraft state data; an I/O module for interfacing with the E E E 1394 and 12C buses.

All modules communicate with each other via a 33 MHz PC1 bus. The microcontroller node is very

similar to the flight computer node except the microcontroller has lower performance and less memory to

conserve power. The non-volatile memory node has four slices, each slice contains 256 Mbytes of flash

memory and 1 Mbytes of GMRAM. The flash memory has much higher density and is suitable for block

data storage. However, it has limited number of write cycles and is susceptible to radiation effects. The

GMRAM has unlimited write cycles and is radiation tolerant, but its density is much lower than flash. In

X2000, the flash memory is used for software codes and science data storage while the GMRAM is used

7

to store spacecraft state data. The non-volatile memory slices are controlled by a microcontroller with an

IEEE 1394 and 12C bus interfaces.

4 Design of the COTS Fault-Tolerant Bus

As it is mentioned that the COTS fault-tolerant bus is comprised of the IEEE 1394 and the 12C

buses. A very detail trade study was conducted at the beginning of the X2000 First Delivery project to

select the buses. At the end, the IEEE 1394 bus was selected because of its high data rate (100, 200 or

400 Mbps), multi-master capability, moderate power consumption, strong commercial support, relatively

deterministic latency, and the availability of commercial ASIC cores (referred to as Intellectual Properties

or Ips in industry). The advantages of I P S are that they are reusable and can be integrated in ASICs and

fabricated by rad-hard foundry to meet radiation requirements. The 12C bus was selected because of its

very low power consumption, multi-master capability, availability of ASIC I P S , adequate data rate (100

kbps) for low speed data, simple protocol, and strong commercial support. APL has even developed a

rad-hard 12C based sensor interface chip.

Although the IEEE 1394 and 12C buses are very attractive in many aspects, it was recognized

early in the design activity that they are not ideal buses in the classical fault tolerance sense. The 1394

bus has limited fault detection features, and has no explicit fault recovery mechanisms such as built-in

redundancy or cross strapping. In particular, the 1394 bus has a tree topology that can easily be

partitioned by a single node or link failure. The 12C bus has almost no built-in fault detection except an

acknowledgement bit after every byte transfer. However, they are preferred over the other fault-tolerant

buses mainly because of their low cost and commercial support. To effectively manage the trade-offs is

the characteristic of our approach to using COTS for highly reliable systems; and the techniques to

compensate for their weakness in fault tolerance is the main focus of this paper.

8

4.1 Failure Modes in Data Bus of Spacecraft Avionics Systems

At this point, it is worthwhile to identify the most common or critical failure

modes for data buses in spacecraft avionics systems, which are the targets of the fault

tolerance techniques described in this paper. NASA/JPL always performs failure mode effect

and criticality analysis (FMECA) for every spacecraft design. Based on those experiences, the following

failure modes for data buses in avionics systems have been identified as either frequently occur or critical

to the survival of the spacecraft.

1. Invalid Messages: Messages sent across the bus contains invalid data.

2. Non-Responsive: An expected response to a message does not return in time.

3. Babbling: Communication among nodes is blocked or interrupted by uncontrolled data stream.

4. Collision: More than one node has the same identification.

4.2 Overall Strategy of COTS Fault-Tolerant Bus Design

The overall strategy of the COTS fault-tolerant bus design applies the methodology mentioned in

Section 2 as follows.

Step I : Native Fault Containment - The basic fault detection mechanisms of the IEEE 1394 and 12C

buses such as CRC and acknowledgment are used to detect invalid messages or non-responsive failure

modes.

Step 2: Enhanced Fault Containment - A layer of hardware and software is added to enhance the fault

detection and recovery capability of the IEEE 1394 and 12C buses. The extra layer of hardware is added

to the ASIC containing the I P S of the IEEE 1394 and 12C buses.

9

Step 3: Fault Protection by Design Diversity - Since the IEEE 1394 bus adopts a tree topology, it is very

difficult to isolate or recover from a failed node or link because the bus network is partitioned and

communication between the sub-trees is cut off. The 12C bus is used to assist the fault isolation and

recovery by maintaining the communication of all nodes. Similarly, if the shared medium of the 12C bus

fails, the 1394 bus can be used to assist the isolation and recovery of the 12C bus.

Step 4: Fault Protection by System Level Redundancy - The set of COTS buses (i.e., IEEE 1394 and 12C

bus set) is duplicated. If the primary COTS bus set has failed due to a single-point-failure between the

IEEE 1394 and 12C buses, the backup COTS bus set will be activated to assist the fault isolation and

recovery of the primary bus set. The 12C bus in the backup COTS bus set will be activated first since it is

much easier to initialized. Also the backup 12C bus can provide communication among the nodes to

facilitates the isolation of the single-point-failure in the primary bus set. If the single-point-failure can be

isolated and removed by bus reconfiguration, then the primary bus set will resume normal operation.

Otherwise, the backup IEEE 1394 bus will be activated. With both the backup IEEE 1394 and 12C buses

activated, the backup bus set can replace the primary bus set.

In some circumstances, only the IEEE 1394 bus in the primary bus set can be recovered and the

12C bus is still affected by the single-point-failure (i.e., due to the multi-drop topology of the 12C bus).

The backup 12C bus and the primary IEEE 1394 bus can work together as a single bus set.

In rare occasions, the backup 12C bus also fails while trying to assist the primary bus set to isolate

the single-point-failure. The backup IEEE 1394 bus can be activated to assist the fault isolation and

recovery of the primary bus set as well as handling the workload.

4.2 Native Fault Containment Regions

The basic fault detection mechanisms of the IEEE 1394 and 12C buses are highlighted in this

section.

10

4.2.1 Highlights of the IEEE 1394 Bus Fault Tolerance Mechanisms

The 1394 bus standard has many built-in fault detection mechanisms. A summary of these

mechanisms is given below. The details of the acknowledgment and response packet error codes can be

found in [5] and [6].

1. Data CRC and packet header CRC for both isochronous and asynchronous transactions

2. Acknowledgment packets include error code to indicate if the message has been successfully

delivered in asynchronous transactions

3. Parity bit to protect acknowledgment packets

4. Response Packets include error code to indicate if the requested action has been completed

successfully in asynchronous transactions

5. Built-in timeout conditions: response timeout for split transaction, arbitration timeout,

acknowledgment timeout etc.

A very import feature in the latest version of the IEEE 1394 standard (IEEE 1394a [lo]) is the

capability to enable or disable individual ports (a port is the physical interface to a link). With this

feature, every node in the bus can disable a link connected to a failed node and enable a backup link to

bypass the failed node. This feature is the basis of the IEEE 1394 bus recovery in this bus architecture.

Another feature in the IEEE 1394 standard is the keep-alive of the physical layer with cable

power. This feature allows the link layer hardware and the host processor to be powered off without

affecting the capability of the physical layer to pass on messages. This is useful for insolating a failed

processor during fault recovery.

4.2.2 Highlights of the 12C Bus Fault Detection Mechanisms

The only fault detection mechanism is the acknowledgment bit that follows every data byte. When

a node (master) sends data to another node (slave), and if the slave node is able to receive the data, it has

1 1

to acknowledge the transaction by pulling the data line (SDA) to low. If the slave node fails to

acknowledge, the master node will issue a stop condition to abort the transaction. Similar situation can

happen when the master node requests data from a slave node. If the master fails to acknowledge after

receiving data from the slave, the slave will stop sending data. Subsequently, the master node can issue a

stop condition to terminate the transaction if it is still functional.

4.3 Enhanced Fault Containment Regions

Several mechanisms are added to enhance the fault detection and recovery capability of the IEEE

1394 and 12C buses. They are discribed in the following.

4.3.1 Enhanced Fault Tolerance Mechanisms for IEEE 1394 Bus

Heartbeat and Polling

The X2000 architectural design enhances the fault detection capability of the 1394 bus with

heartbeat and polling. Heartbeat is effective for detecting root failure while polling can be used to detect

individual node failures. Since the cycle master (root) of the 1394 bus always sends out an isochronous

cycle start message every 125 ps (average), it is natural to use the cycle start message as the heartbeat. All

other nodes on the bus monitor the interval between cycle start messages. If the root node fails, other

nodes on the bus will detect missing cycle start and initiate fault isolation process (to be discussed in later

sections). However, cycle start can only detect hardware level faults since it is automatically generated by

the link layer. Therefore, a software heartbeat should be used to detect faults in the transaction or

application layers.

Other failure modes can also be detected by this method. For example, multiple roots will

generate more than one hardware heartbeat (i.e., cycle start) within an isochronous cycle. By comparing

the actual heartbeat interval with a minimum expected heartbeat interval, the multiple heartbeats can be

detected. More discussions about the multiple root detection can be found in the next two sections.

12

Furthermore, software heartbeat is effective in detecting babbling nodes. If the fault causing the

node to babble is in software, it is possible that the hardware heartbeat may appear to be valid since the

cycle start is automatically generated by the link layer hardware. On the other hand, the software fault is

likely to affect the software heartbeat. Therefore, the software heartbeat is preferred over the hardware

heartbeat in detecting babbling nodes.

In addition to heartbeat, the root node can also send polling messages periodically to individual

nodes by asynchronous transaction. Since asynchronous transaction requires acknowledgment from the

target node, a node failure can be detected by acknowledgment timeout.

Isochronous Acknowledgment

Sometimes, acknowledgment is desirable for isochronous transactions, especially when the

isochronous transaction requires on-time and reliable delivery. Therefore, a confirmation message type is

added to the application layer, so that the target node can report any isochronous transaction errors to the

source node. The confirmation message itself can be either an isochronous or asynchronous transaction,

depending on the time criticality. Furthermore, the data field of the original isochronous message contains

the source node ID, so the target node knows where to report the isochronous transaction errors. If the

confirmation message contains an error code, the source node can retransmit the message in isochronous

or asynchronous mode as appropriate.

Link Layer Fail-Silence

The root node of the IEEE 1394 bus periodically sends a “fail silence” message to all nodes;

every node in the bus has afail silence timer in the link layer to monitor this message. Upon receiving the

message, each node will reset its fail silence timer. If one of the nodes babbles because of a link layer or

application layer failure, the fail silence message will be blocked or corrupted. This will cause the fail

silence timer in each node to time out. Subsequently, thefail silence timer will disable the hardware of its

own link layer and thus inhibit the node from transmitting or receiving messages (note: the ability of the

13

physical layer to pass on message is unaffected). Eventually, after a waiting period, the link layers of all

nodes including the babbling node will be disabled and the bus will become quiet again. At this time,

another timer in the root will “unmute” the root itself and send a Link-on packet, which is a physical layer

packet, to individual nodes. Upon receiving the Link-on packet, the physical layer of a node will send a

signal to wake up its link layer. If a node causes the bus to fail again while its link layer is re-enabled, it

will be identified as the failed node and will not be enabled again. If the root itself is the babbling node,

other nodes will detect the unmute timeout and issue bus reset.

Watchdog Timers

The IEEE 1394 standard has specified many watchdog timers. Additional watchdog timers that

are related to fault detection of the IEEE 1394 bus have been identified as follows.

CPU Watchdog Timer: A hardware timer to monitor the health of the host CPU (i.e., the

microprocessor or microcontroller). This watchdog timer is an incremental counter and need to be reset

by the CPU periodically. If the CPU fails to reset this watchdog, an overflow will occur which then will

trigger a local reset.

Heartbeat Lost Timer (HLT): Triggered by lost of heartbeat or CPU. It times out after a

programmable value is decremented to zero.

Poll Response Timer (in Root Node): A software timer monitor the response time of polling

message on the 1394 bus.

14

4.3.2 Enhanced Fault Tolerance Mechanisms for 12C Bus

Protocol Enhancement

A layer of protocol is added to the 12C bus. This protocol includes a byte count after the address

and two CRC bytes after the data. X2000 design also utilizes especial hardware messages commands to

control critical functions. For these messages, command is sent followed by its complement to provide

one more layer of protection.

Byte Timeout

The 12C bus permits a receiving node (slave or master) to hold down the clock signal (SCL) as a

means to slow down the sending node (master or slave). This is to allow a fast node to send data to a

slow node. However, it is possible that a failed receiving node causes a stuck-at-low fault on the SCL

signal, so that the sending node may have to wait indefinitely. To recover from this failure mode, every

node has a byte timeout timer to monitor the duration of the SCL signal. When the byte timeout timer in a

node (including the faulty node) expires, it will disable the circuitry of the SDA and SCL transmitters.

After all nodes have disabled their SDA and SDL transmitters, a recovery procedure similar to that in the

fail-silence mechanism (see next) will be used to disable the failed node.

Fail Silence

One of the nodes in the 12C is designated as the controlling master. The controlling master

periodically sends a “fail silence” message to all 12C nodes. All nodes will monitor this message with an

f2C bus fail silence timer. Upon receiving the message, each node will reset its f2C bus fail silence timer.

If one of the nodes is babbling so that the fail silence message is blocked or delayed, the f’C bus fail-

silence timer of each node will time out. Subsequently, the bus transmitters of each node will be disabled

to inhibit any transmission of messages. However, the bus receiver of each node is still enabled so that it

can receive commands for fault recovery later on. After a waiting period, the bus transmitters of all nodes

including the babbling node will be disabled and the bus will be quiet again. At this time, another timer

15

in the controlling master node will “unmute” the node itself and send a message to re-enable the other

nodes individually. If a node causes the bus to fail again while it is enabled, it will be identified as the

failed node and will not be enabled again. If the root itself is the failed node, other backup nodes will

detect the unmute timeout and promote themselves as the controlling master according to a pre-

determined priority.

4.4 Fault Protection by Design Diversity

By working together, the IEEE 1394 and 12C buses can isolate and recover from many faults that

might not be possible if each bus is working alone. The failure modes that can be handled by the

coorpration of the buses are as follows.

Non-Responsive Failures

In the IEEE 1394 bus, when a node or one of its links fails in the non-responsive mode, it will not

be able to respond to requests and messages will not be able to pass through the node. The existence of

the failure can easily be detected by the bus timeout, message re-transmission, heartbeat, or polling. In

general, the failed node is relatively easy to isolate because all the nodes in the sub-tree under it will

become non-responsive to the requests from the root node. Therefore, the prime suspect is usually the

non-responsive node nearest to the root. However, to recover from the fault is not trivial because the tree

topology of the bus has been partitioned in to two or three segments by the failed node. The nodes in

each segment will not be able to communicate with the nodes in the other segments. Consequently, the

root node will not be able to command the nodes in the other segments to change bus topology. It might

be possible to devise distributed algorithms so that each node can try different link configurations to re-

establish the connectivity. However, these algorithms usually are rather complicate and their

effectiveness is difficult to prove.

Under these circumstances, the 12C bus can facilitate the communication among all the nodes.

The root node will first interrogate the health of the nearest non-responsive node (i.e., the prime suspect)

16

through the 12C bus. If the node does not respond or if its response over the 12C bus indicates any internal

or physical connection failures, then the root node can send 12C messages to the other nodes and

command them to reconfigure their links to bypass the failed node. If the prime suspect node is fault-free,

then the root can repeat the interrogation (and recovery procedure) on the other nodes in separate

segments.

Similarly, if a node in the 12C bus becomes non-responsive, the source node can interrogate the

health of the target node through the IEEE 1394 bus, command the target node to reset its 12C bus

interface, and request the target node to retransmit the message.

IEEE 1394 Bus Physical Layer Babbling

The fail-silence technique is effective to handle babbling failures in the 12C bus and in the link or

application layers in the IEEE 1394 bus. However, the physical layer of the IEEE 1394 bus is rather

complicate and contains state machines, it is possible that a transient fault would cause it to babble. A

particular dangerous type of babbling is the continuous reset because any node in the IEEE 1394 bus is

able to issue bus reset. Such failures cannot be handled by fail-silence. It is because if the physical layer

is silenced, it will not be able to pass on messages and thus cause bus partitioning. In this case, each node

can check its own physcial layer (e.g., read the physical layer registers). If the physical layer is faulty, the

processor of the node can issue a physical layer reset to correct the problem. However, if the physical

layer fault is permanent, then the node has to inform the root node via the 12C bus. Subsequently, the root

node can command other nodes via the 12C bus to reconfigure the bus topology to bypass the failed node.

Collision of Node Addresses

The address of any node in the IEEE 1394 or 12C buses can be corrupted by permanent fault or

single event upset. If the faulty address coincides with an existing node address, any read transaction to

that address will be corrupted by bus conflict from the two nodes, and any write transaction will go to

both nodes and may have unpredictable consequences. Hence, it is difficult to disable the fault node by

17

the bus itself alone. However, with the redundant IEEE 1394/12C bus set, this kind of failures can be

handled through using one bus to disable a faulty node on the other bus, so that the erroneously duplicated

node address can be eliminated.

4.5 Fault Protection by System Level Redundancy

The COTS bus set is duplicated to provide system level of fault protection. The procedure of

using the redundant COTS bus set to handle faults has been explained in Section 4.2.

To further enhance the effectiveness of the system level redundancy, the IEEE 1394 bus in the

backup COTS bus set connects the nodes in such a way that any branch node in primary bus set is a leaf

node in the backup bus set and vice versa. In other words, there is no node that is a branch node for both

buses. This is shown in Figure 2. Hence, a failed node can only partition the bus in which it is a branch

node. For the other bus, the failure only represents the loss of a leaf node, but the main body of the tree

structure is not affected.

..��
.....

I Bus I Branch I

. - - . . . - . .

. . . .

. .

..��

Figure 2: Configuration Diversity of Redundant IEEE 1394 Bus

4.6 Fault Recovery under Catastrophic Failure Condition

Under catastrophic failure conditions such as bus power failure, both COTS bus sets may fail

such that all communications among the nodes are lost. To re-establish the communication, each node

can execute a distributed recovery procedure that consists of a sequence of link enable/disable activities.

The enabled links of all the nodes in each step of the procedure forms a bus configuration. If the critical

I8

nodes of the system can communicate with each other in one of the bus configurations, further fault

recovery procedures can follow. Unfortunately, this approach requires reasonably tight synchronization

among all the nodes, which is very difficult to achieve when all bus communications are lost.

Furthermore, since the cause of the catastrophic failure may not be within the avionics system, there is no

guarantee that the distributed recovery procedure will succeed. Therefore, this approach is only the last

recourse to save the spacecraft.

5 Summary and Future Work

We have desribed our approach to using COTS in highly reliable systems. Our methodology calls

for a multi-level fault protection techniques. The methodology realizes that COTS are not developed with

high reliability in mind. Nevertheless, by using multi-level fault protection, the same level of reliability

as the traditional full-custom fault tolerance approach can be achieved. In fact, this methodology allows

more freedom for design trade-off among the fault protection levels. This can result in less complicate

designs than the traditional strictly enforced fault containment policy. Examples of how the methodoloy

is realized in the X2000 bus architecture are also given. The design techniques in each levels of fault

protection will be verified by fault injection under various fault scenarios. The effectiveness of the multi-

level fault protection methodology will be measured by its fault coverage. The distributed algorithm to

handle catastrophic failures will also be refined in the near future.

Reference:

[l] L. Alkalai and A. T. Tai, “Long-life deep-space applications,” ZEEE Computer, vol. 31, pp. 37-38,

Apr. 1998.

[2] L. Alkalai, “NASA Center for Integrated Space Microsystems,” in Proceedings of Advanced Deep

Space System Development Program Workshop on Advanced Spacecraji Technologies, (Pasadena,

CA), Jun. 1997.

19

[3] L. Alkalai, “A roadmap for space microelectronics technology into the New Millennium,” in

Proceedings ofthe 35th Space Congress, (Cocoa Beach, FL), Apr. 1998.

[4] L. Alkalai and S. N. Chau, “Description of X2000 Avionics Program,” in Proceedings of the 3rd

DARPA Fault-Tolerant Computing Workshop, (Pasadena, CA), Jun. 1998.

[5] IEEE 1394, Standard for a High Performance Serial Bus. Institute of Electrical and Electronic

Engineers, Jan. 1995.

[6] D. Anderson, FireWire System Architecture, ZEEE 1394. PC System Architecture Series, MA:

Addison Wesley, 1998.

[7] D. Paret and C. Fenger, The Z’C Bus: From Theory to Practice. John Wiley, 1997.

[8] Philips Semiconductor, The Z’C-Bus Specijication Version 2.0, Philips Semiconductor, Dec. 1998.

[9] T. Shanley and D. Anderson, PC1 System Architecture, Addison Wesley, 1995.

[lo] IEEE P1394A, Standardfor a High Performance Serial Bus (Supplement), Draft 2.0. Institute of

Electrical and Electronic Engineers, Mar. 1998.

[l I] W. Peterson, “The VMEbus Handbook: Expanded Third Edition,”, VFEA International Trade

Association, 1993

[121 J. Marshall, “Building Standard Based COTS Multiprocessor Computer Systems for Space Around

a High Speed Serial Bus Network,” in the Proceedings of the 17jh Digital Avionics Systems

Conference, (Bellevue, Washington), 1998.

[13] J. Donaldson, “Cassini Orbiter Functional Requirements Book: Command and Data Subsystem,”

JPL Document CAS-4-2006, June 28, 1994

20

